操作指南

 

附表1

更新时间 2020-12-01

模型和数据

为了方便用户使用,我们收集了深度学习常用的数据集,以及一些常用模型的预训练权重,放在对象存储中,用户可直接使用这些数据开始自己的工作,节省下载数据的时间,提高工作效率。

数据集

ImageNet

名称 地址 URL 尺寸
ILSVRC2017 Object localization dataset CLS-LOC dataset https://appcenter-deeplearning.sh1a.qingstor.com/dataset/imagenet/ILSVRC2017_CLS-LOC.tar.gz 155GB
ILSVRC2017 Object detection dataset DET dataset https://appcenter-deeplearning.sh1a.qingstor.com/dataset/imagenet/ILSVRC2017_DET.tar.gz 55GB
ILSVRC2017 Object detection test dataset DET test dataset https://appcenter-deeplearning.sh1a.qingstor.com/dataset/imagenet/ILSVRC2017_DET_test_new.tar.gz 428MB

COCO

名称 地址 数量/尺寸
2017 Train Images https://appcenter-deeplearning.sh1a.qingstor.com/dataset/coco/train2017.zip 118K/18GB
2017 Val images https://appcenter-deeplearning.sh1a.qingstor.com/dataset/coco/val2017.zip 5K/1GB
2017 Test images https://appcenter-deeplearning.sh1a.qingstor.com/dataset/coco/test2017.zip 41K/6GB
2017 Unlabeled images https://appcenter-deeplearning.sh1a.qingstor.com/dataset/coco/unlabeled2017.zip 123K/19GB
2017 Train/Val annotations https://appcenter-deeplearning.sh1a.qingstor.com/dataset/coco/annotations_trainval2017.zip 241MB
2017 Stuff Train/Val annotations https://appcenter-deeplearning.sh1a.qingstor.com/dataset/coco/stuff_annotations_trainval2017.zip 401MB
2017 Testing Image info https://appcenter-deeplearning.sh1a.qingstor.com/dataset/coco/image_info_test2017.zip 1MB
2017 Unlabeled Image info https://appcenter-deeplearning.sh1a.qingstor.com/dataset/coco/image_info_unlabeled2017.zip 4MB

PASCAL VOC

名称 地址 尺寸
VOC2012 training/validation data https://appcenter-deeplearning.sh1a.qingstor.com/dataset/voc/2012/VOCtrainval_11-May-2012.tar 1.86GB
VOC2012 test data https://appcenter-deeplearning.sh1a.qingstor.com/dataset/voc/2012/VOC2012test.tar 1.72GB
VOC2012 development kit code and documentation https://appcenter-deeplearning.sh1a.qingstor.com/dataset/voc/2012/VOCdevkit_18-May-2011.tar 500KB
VOC2012 PDF documentation https://appcenter-deeplearning.sh1a.qingstor.com/dataset/voc/2012/devkit_doc.pdf 416KB
VOC2007 training/validation data https://appcenter-deeplearning.sh1a.qingstor.com/dataset/voc/2007/VOCtrainval_06-Nov-2007.tar 439MB
VOC2007 test data https://appcenter-deeplearning.sh1a.qingstor.com/dataset/voc/2007/VOCtest_06-Nov-2007.tar 430MB
VOC2007 development kit code and documentation https://appcenter-deeplearning.sh1a.qingstor.com/dataset/voc/2007/VOCdevkit_08-Jun-2007.tar 250KB
VOC2007 PDF documentation https://appcenter-deeplearning.sh1a.qingstor.com/dataset/voc/2007/devkit_doc_07-Jun-2007.pdf 175KB

OpenSLR

Name Category Summary Files
Vystadial Speech English and Czech data, mirrored from the Vystadial project data_voip_cs.tgz [1.5G]
data_voip_en.tgz [2.7G]
TED-LIUM Speech English speech recognition training corpus from TED talks, created by Laboratoire d’Informatique de l’Université du Maine (LIUM) (mirrored here) TEDLIUM_release1.tar.gz [21G]
THCHS-30 Speech A Free Chinese Speech Corpus Released by CSLT@Tsinghua University data_thchs30.tgz [6.4G]
test-noise.tgz [1.9G]
resource.tgz [24M]
Aishell Speech Mandarin data, provided by Beijing Shell Shell Technology Co.,Ltd data_aishell.tgz [15G]
resource_aishell.tgz [1.2M]
Free ST Chinese Mandarin Corpus Speech A free Chinese Mandarin corpus by Surfingtech (www.surfing.ai), containing utterances from 855 speakers, 102600 utterances; ST-CMDS-20170001_1-OS.tar.gz [8.2G]

VGGFace2

名称 描述 地址 尺寸
Licence.txt Licence for VGGFace2 dataset. http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/licence.txt -
Readme.txt README. http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/Readme.txt -
Vggface2_train.tar.gz 36G. Loosely cropped faces for training. https://appcenter-deeplearning.sh1a.qingstor.com/dataset/vggface2/vggface2_train.tar.gz 36GB
Vggface2_test.tar.gz 1.9G. Loosely cropped faces for testing. https://appcenter-deeplearning.sh1a.qingstor.com/dataset/vggface2/vggface2_test.tar.gz 1.9GB
MD5 MD5. http://www.robots.ox.ac.uk/~vgg/data/vgg_face2/MD5 -
Meta.tar.gz Meta information for VGGFace2 Dataset. https://appcenter-deeplearning.sh1a.qingstor.com/dataset/vggface2/meta.tar.gz 9MB
BB_Landmark.tar.gz The information for bounding boxes and 5 facial landmarks referring to the loosely cropped faces. https://appcenter-deeplearning.sh1a.qingstor.com/dataset/vggface2/bb_landmark.tar.gz 170MB
Dev_kit.tar.gz Development kit. https://appcenter-deeplearning.sh1a.qingstor.com/dataset/vggface2/dev_kit.tar.gz 3kB

中英文维基百科语料

名称 描述 地址 尺寸
zhwiki-latest-pages-articles.xml.bz2 2018年7月23日时最新的中文维基百科语料 https://appcenter-deeplearning.sh1a.qingstor.com/dataset/wiki/zhwiki-latest-pages-articles.xml.bz2 1.5GB
enwiki-latest-pages-articles.xml.bz2 2018年7月23日时最新的英文维基百科语料 https://appcenter-deeplearning.sh1a.qingstor.com/dataset/wiki/enwiki-latest-pages-articles.xml.bz2 14.2GB

预训练模型

TensorFlow-Slim image classification model library

下表中 Checkpoint 地址均为山河对象存储地址,可直接下载。

Model TF-Slim File Checkpoint Top-1 Accuracy Top-5 Accuracy
Inception V1 Code inception_v1_2016_08_28.tar.gz 69.8 89.6
Inception V2 Code inception_v2_2016_08_28.tar.gz 73.9 91.8
Inception V3 Code inception_v3_2016_08_28.tar.gz 78.0 93.9
Inception V4 Code inception_v4_2016_09_09.tar.gz 80.2 95.2
Inception-ResNet-v2 Code inception_resnet_v2_2016_08_30.tar.gz 80.4 95.3
ResNet V1 50 Code resnet_v1_50_2016_08_28.tar.gz 75.2 92.2
ResNet V1 101 Code resnet_v1_101_2016_08_28.tar.gz 76.4 92.9
ResNet V1 152 Code resnet_v1_152_2016_08_28.tar.gz 76.8 93.2
ResNet V2 50 Code resnet_v2_50_2017_04_14.tar.gz 75.6 92.8
ResNet V2 101 Code resnet_v2_101_2017_04_14.tar.gz 77.0 93.7
ResNet V2 152 Code resnet_v2_152_2017_04_14.tar.gz 77.8 94.1
VGG 16 Code vgg_16_2016_08_28.tar.gz 71.5 89.8
VGG 19 Code vgg_19_2016_08_28.tar.gz 71.1 89.8
MobileNet_v1_1.0_224 Code mobilenet_v1_1.0_224.tgz 70.9 89.9
MobileNet_v1_0.50_160 Code mobilenet_v1_0.5_160.tgz 59.1 81.9
MobileNet_v1_0.25_128 Code mobilenet_v1_0.25_128.tgz 41.5 66.3
MobileNet_v2_1.4_224 Code mobilenet_v2_1.4_224.tgz 74.9 92.5
MobileNet_v2_1.0_224 Code mobilenet_v2_1.0_224.tgz 71.9 91.0
NASNet-A_Mobile_224 Code nasnet-a_mobile_04_10_2017.tar.gz 74.0 91.6
NASNet-A_Large_331 Code nasnet-a_large_04_10_2017.tar.gz 82.7 96.2
PNASNet-5_Large_331 Code pnasnet-5_large_2017_12_13.tar.gz 82.9 96.2
这篇文档解决了您的问题吗?
0
0